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SUMMARY 

An algorithm is presented for the finite element solution of three-dimensional mixed convection gas flows in 
channels heated from below. The algorithm uses Newton’s method and iterative matrix methods. Two 
iterative solution algorithms, conjugate gradient squared (CGS) and generalized minimal residual 
(GMRES), are used in conjunction with a preconditioning technique that is simple to  implement. The 
preconditioner is a subset of the full Jacobian matrix centred around the main diagonal but retaining the 
most fundamental axial coupling of the residual equations. A domain-renumbering scheme that enhances 
the overall algorithm performance is proposed on  the basis of an analysis of the preconditioner. Comparison 
with the frontal elimination method demonstrates that the iterative method will be faster when the front 
width exceeds approximately 500. Techniques for the direct assembly of the problem into a compressed 
sparse row storage format are demonstrated. Elimination of fixed boundary conditions is shown to decrease 
the size of the matrix problem by up to 30%. Finally, fluid flow solutions obtained with the numerical 
technique are presented. These solutions reveal complex three-dimensional mixed convection fluid flow 
phenomena at  low Reynolds numbers, including the reversal of the direction of longitudinal rolls in the 
presence of a strong recirculation in the entrance region of the channel. 
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INTRODUCTION 

Three-dimensional mixed convection flows arise in pipes, channels and ducts when a forced flow 
is superimposed on a free convection, buoyant flow driven by temperature gradients in the 
enclosure. Such flows arise in heat transfer systems when convection enhances cooling over pure 
conduction’ and in chemical reactors when mixed convection causes non-uniform growth rates in 
thin film processes such as in chemical vapour depostion (CVD) systems.’ Calculating the flow 
structures that arise is a difficult numerical problem in both complexity and size, since fine meshes 
are required to capture small-scale flow structures in the enclosure. 
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For conditions that give rise to three-dimensional flows, namely supercritical Rayleigh 
numbers, marching methods based on a parabolic approximation to the governing equations are 
a useful technique when the forced flow is sufficiently strong that diffusion of momentum and 
energy in the axial direction can be neglected.’ - 4  The parabolic approximation, however, cannot 
predict recirculatory flows which may occur at low Reynolds numbers. Furthermore, it is unclear 
when the parabolic approximation breaks down, since solutions may be computed for arbitrarily 
low flow rates even though in reality, back flows may exist. In the light of these difficulties a fully 
three-dimensional solution over the whole domain is required. The resulting computational 
requirement can be large. 

In the present work we present an approach for the solution of low Reynolds number mixed 
convection flows of gases in channels heated from below. The solution strategy is based on the 
finite element method (FEM)5 implemented in Newton’s method using sparse storage and 
iterative matrix methods. We emphasize the development of a simple preconditioner for fluid flow 
in channels. This study is motivated by the need to understand transport phenomena in 
horizontal CVD reactors where a gas containing dilute concentrations of film precursors flows 
over a heated substrate where chemical reactions and film deposition occur.2 

MODEL EQUATIONS 

The geometry is shown in Figure 1. Isothermal gas at  room temperature flows into a horizontal 
enclosure which is heated from below. The flow in this geometry is governed by the Cauchy 
momentum equations, the energy equation and the continuity equation. Several approximations 
may be made for CVD reactor flows.’ The gas is considered ideal, so that the density variation 
with temperature T is given by 

where M is the molecular weight of the gas and R is the universal gas constant. Since pressure 
variations in the reactor are small, the pressure P is taken to be constant at the reactor operating 
pressure. This implies that the density can be expressed in term of its value po at the inlet 
temperature To. In this and the following equations the subscript ‘0’ indicate values evaluated at 
the inlet. 

Typical low Reynolds number flows have Mach numbers much less than unity, so compress- 
ibility effects may be neglected except for the thermal expansion of the gas. The fluid is Newtonian 
and the physical properties of viscosity p, thermal conductivity k and heat capacity Cp are only 
functions of temperature and are given in Table I. Energy contributions from pressure changes, 
viscous dissipation and Dufour effects are small and may be neglected.6 

Figure 1. Geometry and co-ordinate system of channel 
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Table I. Expressions for physical parameters of H, and N, (from Reference 7) 

Property Hydrogen Nitrogen 

Viscosity p 2.224 x 4.1772 x 
(gcms-I)  

(calcm-'s- 'K-'  1 
Thermal conductivity k 8.0149 x 8.804 x 1 0 - 7  T O . 7 5 1 5  

Heat Capacity C, x M 6.9417- 1.742 x T 6.9036-3.748 x T 
(cal mol-'K-') $4~512 x T 2  + 1.9306 x T 2  

-6.86 x lo-'' T 3  

The assumptions outlined above lead to the following set of governing equations: 

To - T 
g+ v p [VY + (VV)'-# I V  * v ] ,  p , - v . V v =  -vp+po- ( 2 )  

TO 
T T 

TO 
PO - C p v . V T = V * ( k V T ) ,  

T (3) 

In these equations the hydrostatic contribution to the pressure has been subtracted; the pressure 
field P is defined above a hydrostatic pressure datum. v is the velocity and g is the gravitational 
acceleration. 

There are two fundamental ways to non-dimensionalize the problem. The scaling factor for 
velocity, uo, can be chosen as in forced convection, uo = u,,,, or as in free convection, uo = p o / p o h ,  
where h is the characteristic length, the height of the channel. The resulting dimensionless 
equations contain the Grashof number G r = g h 3 A T p i / p i  To and, depending on the scaling 
factor, may include the Reynolds number R e = p o u , h / p o .  In these definitions AT represents the 
temperature difference between the heated susceptor (T,,) and the top wall of the channel (To) .  In 
both non-dimensionalizations the dimensionless temperature 0 = ( T -  T o ) / A  T arises explicitly 
along with a dimensionless temperature scaling factor AT/To. For the channel geometry with no 
imposed transverse flow it is appropriate to scale the axial velocity with the maximum inlet 
velocity and the transverse velocity with the viscous velocity. The non-dimensional equations 
then take the following form: 

x-momentum, 
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y-momentum, 

u-+-u-+-w- au 1 a u  1 =-Re-+- ap a [ y (4 1 au  2au  2 1 a w  
ay ay 3Re ay 3ax  3Re a Z  ( 1 + 0 g) - ( ax Re ay  Re a') aZ 

ax 

z-momentum, 

(l+@g)-I( 
=-Re-+- ap a [ y (4 1 aw 2 a u  2 1 au 

aZ aZ 3Re az 3 a x  3 R e a y  

+b [ y (au +L ")1 
ax a Z  Re ax 

(7) 

continuity, 

(9) 

In the above equations y is the dimensionless viscosity, y is the dimensionless thermal conduct- 
ivity and 5 is the dimensionless heat capacity. The scaling leads to the appearance of the Prandtl 
number Pr = po C,,/k,  and the Peclet number Pe = Pr Re in the energy equations. For most gases 
Pr is approximately constant at 0.7. Taking advantage of this fact and using the Rayleigh number 
Ra = Gr Pr instead of Gr as the dimensionless temperature group, the problem is well described by 
three dimensionless numbers: Re, Ra and ATIT,. For conditions of high Re the equations reduce 
to the parabolic flow de~cr ip t ion .~ ,~  

For situations where AT is very small, temperature variations over the domain are small and 
the physical properties given in Table I are nearly constant, independent of T. Furthermore, as 
AT/T,+O, the forced and free convection equations reduce to the equations that would arise 
under the Boussinesq approximation. Thus the dimensionless group A TIT, may be considered a 
measure of the deviation from the behaviour of a Boussinesq fluid. 

The inlet velocity profile is fixed as fully developed, isothermal Poiseuille flow.8 Fluid velocities 
are set equal to zero on solid walls, fluid total normal stresses are set equal to zero at the outlet 
and tangential stresses are set equal to zero at symmetry planes. To avoid deleterious effects of the 
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outlet boundary conditions, a long exhaust region is used to insure that outlet effects do not 
influence the flow in the entrance region of the duct. Fluid flow across a plane of symmetry is 
disallowed. The top wall is fixed at the inlet temperature To, while the heated substrate holder (the 
susceptor) in the central region of the bottom is fixed at a high temperature r b .  The side walls and 
the channel floor downstream of the susceptor are considered insulting. The temperature in the 
channel floor upstream of the susceptor is fixed with a temperature profile modelled as a thermal 
'cooling fin',6 with the dimensionless heat transfer coefficient Q2 = HL/kwB being a function of the 
wall thickness B, the thermal conductivity of the wall material, kw, the total length of the entrance 
region, L, and an overall heat transfer coefficient H for natural and convection heat transfer from 
the wall. In the expression below i is the dimensionless distance from the leading edge of the 
susceptor back towards the inlet. In the boundary conditions summarized in equations (lo), n is 
the unit normal to the indicated boundary surface:. 

Vsolid walls = O, vinle1 =fully developed Poiseuille flow,a 

n - p [ v v + ( v ~ ) ~ - $ I V  ~ v - ~ I ] , , , ~ ~ , ~  = 0, 

Tinlet = T o p  wall = TO, Tsusceptor = Tb, 

(cash CQ(1-01) AT, 
cosh Q Tbottom wall of iniet region = TO + 

' Tside walls = ' Toutlet = Tbottom wall of exhaust =O. (10) 

FINITE ELEMENT FORMULATION AND SOLUTION ALGORITHM 

The primitive variable formulation is used with the now dimensionless variables v, 0 and p 
expanded in basis functions 0 and Y as shown in equations (1 1). M ,  and MI are respectively the 
total number of quadratic and linear basis functions in the domain. 

M'l M, MI 

i = l  i = l  i =  1 
v =  c viai, @ =  c OiOi, P =  C P i y i .  (1 1) 

Galerkin's method is applied by forming the inner product of the governing equations with the 
basis functions over the domain (Q and 30). Gauss' theorem is applied to handle the boundary 
conditions resulting in residual equations for momentum (RI,  Rb, Rh), energy (RL) and continu- 
ity (Rd)  as shown in equations (12)-(16). The problem is solved when the set of residual equations 
is sufficiently close to zero (R(u, u, w, 0, p ) z O ) .  Further details of the formulation of FEM 
problems can be found in References 5 and 9. 

R ; = l (  I + @ % )  AT ( R e u c ^ u + a @ + w * ) B i  
ax ay az 
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+- a W [  g ( --+-- 1 aw 1 a v ) ]  8% 
a y  Re a y  Re az 

( 1 + 0 %) AT -' 5 ( R e  u o+ u %+ w ") m i  
a x  a y  az 

The basis functions Oi and Yi are chosen in the finite element method to be non-zero over a 
localized region of the domain. The domain is tessellated into finite elements which support the 
basis functions. @ is chosen to be a quadratic function so that the three velocity components and 
the temperature are expanded in triquadratic basis functions on 27-node brick elements. 'I' is 
taken to be a linear function so that pressure is expanded in trilinear basis functions on eight-node 
brick elements. The 27- and eight-node elements are superimposed on each other in the domain 
discretization. This use of mixed-order basis functions, known as mixed interpolation, is standard 
in the primitive variable formulation of the Navier-Stokes equations." The calculation of the 
volume integrals required in the residuals is done by 27-point (3  x 3 x 3)  Gauss quadrature. 

The zeros of equations (12)-(16) are found by Newton iteration. In Newton's method an initial 
guess to the solution is modified by a correction calculated by 

where the new guess uk+l  varies from the old guess uk by a contribution determined by the 
residual vector R and the Jacobian matrix J, where Jij=dRi/auj. Equation (17) can be solved by 
LU decomposition and back substitution. The use of LU factorization of the Jacobian has 
advantages in the continuation scheme discussed below. 

At each Newton step the Jacobian matrix must be calculated and assembled and a linear 
system of the form Ax = b solved. A modified Newton' ' method is implemented by calculating J 
only at the first step and using the same Jacobian in subsequent iterations. The present 
implementation uses a variant of this modified scheme where the Jacobian is evaluated at every 
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second step until the solution is sufficiently close to convergence, at which point the Jacobian is 
no longer updated. This strategy represents a significant saving in computational time. 

Because of the non-linear nature of the fluid flow problem, continuation techniques are needed 
to obtain a good initial guess for the Newton iteration and to map out the solution behaviour in 
the Re-Ra-ATIT, parameter space. First-order continuation12 is used. The next initial guess is 
determined by 

where ci  is the continuation parameter in question (e.g. Re). The vector a u p a  is calculated from 

Unew=Uold +(au/aa)ddAci? (18) 

(19) (aR/au) au/aa = Jaulau = - aR/aa. 

Since J is known from the solution of the matrix problem (equation (17)), it is only necessary to 
evaluate -aR/da and solve the linear system. This can be done by a back substitution in order N 
operations ( N  is the order of the system) if using the previously calculated LU factors, or iteratively 
as will be described later. 

NUMERICAL PROCEDURES 

Traditionally, the solution of non-linear boundary value problems by discretization methods is 
dominated by two processes: the calculation and assembly of the Jacobian, which might include 
numerical quadrature, and the solution of the matrix problem J A u =  -R. In the frontal method 
of Irons13 and Hood14 these two processes are done simultaneously and the merit of frontal 
methods is a low memory overhead. Once an unknown is fully assembled, it is eliminated from the 
matrix problem. In this way, only a limited number of matrix entries must be stored in core 
memory. Only the elements contributing to the active ‘frontal matrix’ are manipulated and partial 
and full pivoting in the frontal matrix is possible. The pivoting characteristics of the frontal 
method makes it particularly well suited to the primitive variable formulation of the 
Navier-Stokes equations. Pivoting is required in that case to treat the zero on the diagonal of the 
Jacobian arising, since the pressure unknown does not appear explicity in the continuity 
equation. 

In non-linear problems where several modified Newton iterations are required, it is advantage- 
ous to keep the full LU decomposition of J in core for quick back substitutions using updated 
residuals. In cases where solid state disk space is unavailable, the 1/0 overhead can be seriously 
detrimental to the overall solution efficiency. This offsets the memory advantage of frontal 
methods. There is, however, also an operation count advantage of the frontal method over 
conventional band solvers. This advantage arises because the front width in the present formula- 
tion is roughly one-half the total band width. Here we demonstrate how a preconditioned 
iterative method is more efficient for large front widths despite the inherent advantages of the 
frontal elimination method. 

Matrix structure 

The compressed sparse row format’’ was chosen to store the Jacobian matrix. It is a compact 
storage scheme for non-symmetric matrices that stores only the non-zero entries of J utilizing 
2*MSIZE + N + 1 storage locations, where MSIZE is the number of non-zeros in J and N is the 
order of the system. The Jacobian entries are stored in an array A (MSIZE). The column number 



824 E. 0. EINSET AND K. F. JENSEN 

corresponding to A ( i )  is contained in location J A ( i ) ,  where J A  is an integer array of length 
MSIZE. The first entry in row k of the matrix is stored at  A(ZA(k) ) .  In other words, row k 
contains ZA(k+ 1)-IA(k)  entries in the locations A ( Z A ( k ) )  to A ( I A (  k +  1)- 1). The correspond- 
ing columns are stored in J A ( Z A ( k ) )  to J A ( Z A ( k +  1)- 1). 

Reduction of system order 

The order of the matrix system was reduced by applying the Dirichlet boundary conditions 
directly at the element level. When this is done, equations corresponding to fixed degrees of 
freedom or Dirichlet boundary conditions are eliminated from the matrix system and the order of 
the system is reduced. By reducing the system order, large FEM problems are solved more 
efficiently. Examples of the order reduction are presented later. 

Precondit ioner 

In any iterative method for the solution of A x  = b, a preconditioner P is required to make the 
solution method competitive with direct solution methods.", l 8  This is done by finding a 
preconditioning matrix P such that 

(1) P is an approximation to A 
(2) P is easily factored so that P y  = u is quickly solved for many right-hand sides 
(3) P-'A is better conditioned than the original matrix A. 

In this problem the preconditioner not only needs to be a good approximation to J, but pivoting 
is also needed in the factorization to properly treat the zero on the diagonal of the continuity 
equation. Because factorization generally fils in the band of a banded matrix,lg a banded storage 
format is chosen and a band around the main diagonal of the Jacobian is used as the 
preconditioner. To enhance the performance of the preconditioner, the domain is renumbered. 
Further details of the preconditioners used and discussion of the renumbering are presented 
below. 

The preconditioner was assembled in the LINPACK" banded matrix storage format simul- 
taneously with the assembly of J. LINPACK is a standard mathematical library using the basic 
linear algebra subroutines (BLAS). This allowed for the utilization of existing routines for the LU 
factorization of P and re-solution of the problem P y = u ,  two operations required in pre- 
conditioned iterative matrix solution algorithms. The LINPACK factorization routine SGBFA 
also supports partial pivoting, which is required for the present problem. 

Solution algorithm 

The solution methods tested are applicable to non-symmetric systems. The first, the conjugate 
gradient squared (CGS) algorithm of Sonneveld,21 is a descent-type algorithm closely related to 
standard conjugate gradient methods. The second, GMRES(k) by Saad and Schultz,22 is a 
restarted minimal residual a l g ~ r i t h m ' ~ . ~ ~  which constructs a Krylov subspace in which to 
minimize some measure of the residual vector. GMRES is in fact a more general version of 
standard descent-type iterative methods which includes CGS and other conjugate gradient 
methods. A major difference between the two methods is that GMRES(k) requires storage of the 
basis vectors of the Krylov subspace, which makes it potentially more storage-intensive than 
CGS. 
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For the CGS algorithm a left preconditioning was used. In the notation of Reference 21, 
PL = P and P, = 1. The algorithm is given below:21 

r,, = P - ' ( A x ,  - b ) ,  i,, =r0 
q , = p - j  =o 
~ - ~ = l ,  n=O. 
Do while residual norm > tolerance 

P n  = G r , ,  B, = P,/P, - 1 

u,=r,+B,qn 
P , =  %I + Bn(4fl+ B n P n -  1 1 
u, = P - 1(Ap,)  
6, = i,T u,, a, = pn/un 

%I= afl(ufl+ 4 n +  1) 
xn+1=xn-u. 
r, + = r, - P ( A  u,) 
n=n+l. 

4 n + l  =%--cIflu, 

Continue 

In the above algorithm, expressions of the type x = P - ' y  indicate solution of the system 

The GMRES( k )  algorithm is essentially Algorithm 4 from Reference 22 with preconditioning P 
P x  = y  by back substituion with the LU-factored preconditioning matrix P .  

added directly into the iterative method. The algorithm reads as follows:22 

0. For the original problem A x = f ,  calculate b = P - ' f  

1. Start-choose x,, and compute ro = b - P - l  A x , ,  u1 = ro/ ( 1  ro (I. 
2. Iterate---doj= 1,2, . . . , k 

new problem is now P - '  Ax = b. 

hi , j=(P- lAuj ,u i ) ,  i = l , 2 , .  . . , j  
G j +  ' = P -  AUj - xi = j( hi, j U i )  

hj+1,j=llfij+1ll 

oj+ 1 = ;j+ 1 /hj+ 1, j. 

3. From approximate solution xk = x,, + Vkyk where yk minimizes I( Be, - Hky (I, y E Rk 
4. Restart-compute rk= b- P - ' A x k  

if converged then stop 
else compute x o = x k , u I  =rk/llrkll,  go to 2. 

General solution outline 

The solution algorithm is shown in Figure 2, with a detailed algorithm of the assembly and 
solution shown in Figure 3. On the first call to the solver the structure of the sparse matrix is 
determined. In finding the reduced-order system, two new arrays are initialized. One points to the 
location in the global matrix where a given entry of the element stiffness matrix for a given 
element belongs, while the second records the amount of shift needed to get to the reduced 
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Define problem parameters 

Set up mesh and solver arrays 

I 

Figure 2. Flow diagram of overall solution algorithm 

problem. In general, these arrays are calculated previously and read from an unformatted data file 
for calculations at other parameter values. 

In the assembly loop, assembly of the preconditioner is optional. If a pointing array is 
initialized that points into the ‘matrix’ vector A, then the inner loop of assembly can be vectorized. 
However, this array is relatively large, and if memory requirements are stringent and the pointer 
array is not used, this assembly loop cannot be vectorized at all. Element-by-element assembly 
can, however, be parallelized or multitasked. 

Once the assembly is done, the preconditioner P must be factored if this has not already been 
done. This process is time-consuming for large-band-width preconditioners, although most of the 
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Figure 3. Flow diagram of sparse/iterative solver 

time spent in factorization is spent in the BLAS routine SAXPY which executes the operation 

DO l O I = l ,  N 
Y(Z)= Y ( I ) + E * X ( I )  

10 CONTINUE 

where E is some constant real value and Y and X are vectors of length N .  A way of avoiding the 
costly factorization step is to assemble and factor only on the first Newton iteration. This 
preconditioner was found to be adequate for the solution at all the subsequent Newton iterations 
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in the solution algorithm and thereby reduced the computational time by avoiding the costly 
factorization. 

Finally, the problem is sent to an appropriate iterative solution algorithm, either CGS or 
GMRES(k). The time spent in the iterative algorithm is dominated by two processes. The first is 
the back substitution using P which is done with the LINPACK routine SGBSL. The time in 
SGBSL is again spent mostly in SAXPY. The second time-intensive routine is the matrix/vector 
multiplication. This is particularly a problem because of the indirect addressing required in the 
compressed sparse row storage format. The inner loop of the matrix/vector multiplication is 
vectorized automatically by the use of GATHER/SCATTER hardware by the compiler.25 The 
relative merits and time and iteration counts of these algorithms are presented below. 

RESULTS AND DISCUSSION 

The advantage of sparse storage is the efficient utilization of core memory so that the whole 
matrix is available for rapid access to its entries. But LIJ decomposition or Gauss elimination 
with pivoting results in matrix fill-in. Since the pivotal element is determined by a conditional 
statement during the elimination, the location of this fill-in together with the necessary storage is 
exceedingly difficult to determine a priori.Ig This leads to the use of iterative solution methods 
which use the sparse matrix only in matrix vector multiplications; but iterative methods depend 
critically on the quality of the p recond i t i~ne r .~~  The performance of the present preconditioner is 
discussed after the memory usage in the finite element formulation. 

Storage requirements 

Table I1 presents the mefnory requirements for various meshes. The first column gives the mesh 
dimensions, with transverse discretizations given in parentheses. The second column is the total 
number of unknowns in the FEM problem. These unknowns include all fixed as well as free 
boundary conditions. When the Dirichlet conditions are applied and the appropriate fixed 
degrees of freedom eliminated from the matrix problem, the number of unknowns in the problem 
decreases as shown in column 3. Note that a significant decrease in the size of the resultant matrix 
problem for fine FEM discretizations suggests that this application of fixed boundary conditions 
is worthwhile. For problems with more than 40 000 unknowns in the original formulation, more 
than 10 000 degrees of freedom can be eliminated and the problem reduced by 25%. Of course, the 
savings are less dramatic for coarse meshes. In general, more nodes on the boundaries result in a 

Table 11. Memory requirements 

Mesh Total number 
of unknowns 

in system 

Order of 
reduced 
system 

Number of 
non-zeros in 

Jacobian 

~ 

Total storage 
required for 

Jacobian 
(M words) 

(4 x 4) x 40 
(5 x 5) x 6 
(5 x 5) x 15 
(5  x 5) x 25 
(5 x 5) x 40 
(5 x 5) x 80 
(6 x 6) x 40 

27269 
6544 

15580 
25620 
40680 
80840 
56765 

19027 
4606 

11476 
19036 
30376 
61166 
44367 

3766948 
912715 

2399083 
403 1563 
6480283 

13153OO3 
9922564 

7.2 
1.7 
4.6 
7.8 

12.4 
25.1 
19.0 
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greater reduction of the problem dimension. For very fine transverse discretizations a smaller 
percentage of nodes and degrees of freedom is eliminated on the boundaries. 

Column 4 shows the number of non-zeros in the Jacobian matrix for the reduced problem. The 
total storage required for the Jacobian is given in column 5, taking into account pointer arrays. 
For a mesh with approximately 80000 unknows the Jacobian matrix is stored in about 
25 Mwords. For problems of the order of 27 000 unknowns the whole Jacobian is stored in under 
8 Mwords. 

Further storage would be gained by using short integers for the pointing arrays ZA and J A .  
This would decrease the space needed to store the Jacobian matrix so that total storage would 
now take about 1.5 MSIZE. Also, although the Jacobian is not symmetric, its structure is 
symmetric. Taking advantage of this would further reduce the required storage for JA.  

Assembly 

In the assembly loop over the elements, four distinct processes may take place. There is always 
a call to the subroutine ABFIND which calculates the element stiffness matrix. There are a 
maximum of 116 degrees of freedom per element, so the element stiffness matrix has 116 x 116 
entries. The time spent in ABFIND is mainly spent on multiplications, divisions, additions and 
subtractions. Because vector dependences do not exist, the inner loop of the element stiffness 
matrix calculation is force-vectorized using a complier directive. The second process that takes 
place is the application of the boundary conditions. This process can be skipped, however, in this 
problem since the boundary conditions array is filled with zeros (fixed boundary conditions 
correspond to zero entries in Au). 

The third process is the assembly of the elemental contributions into the banded pre- 
conditioner. This process is relatively fast since the location in the preconditioner array can be 
calculated directly with no searching. The fourth process is the search in the global matrix vector 
A for where a given element contribution belongs. This is a slow process. The assembly speed can 
be increased by initializing a large pointer array of dimension 116 x 116 x NEO, where NEO is the 
maximum number of elements. For every entry in the element stiffness matrix of a given element, 
it points to the location in A where that contribution belongs. This array is large and aggravates 
the storage requirements of the programme execution. However, it enables the vectorization of 
the assembly loop. 

Preconditioner 

The preconditioner is one of the most important parts of any practical iterative solution 
scheme. Most of the time spent in any solution algorithm using iterative solution techniques is 
related to operations on or with the preconditioner. There are two major operations that need to 
be undertaken. One is the LU factorization of the preconditioner and the other is the re-solution 
or back substitution using the LU factors. If a good preconditioner is found, the iterative method 
will converge rapidly. If calculations with the preconditioner are inexpensive, the time saving can 
be significant. Usually there is a trade-off between preconditioning quality and the time needed to 
evaluate and factor the preconditioner. 

In the present algorithm the preconditioner was factored only once at the first Newton 
iteration. The calculated LU factors were used for all subsequent calculations involving the 
preconditioner, i.e. the preconditioner was not updated in the course of the execution. No 
observable increase in preconditioning quality resulted when the preconditioner was calculated 
and factored at  each Newton step. Since factorization is costly, this resulted in a significant saving 
in total CPU usage, especially when relatively large preconditioner band widths were used. 
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The ideal preconditioner is the exact LU decomposition of the Jacobian matrix; but finding this 
decomposition is equivalent to a direct solution of the problem itself. As stated earlier, in this 
study a subset of the full Jacobian matrix around the main diagonal is stored in band format and 
factored with the LINPACK routine SGBFA. The choice of the size of the band used for 
preconditioning is the critical question in this problem. 

For a sample mesh of 4 x 4 elements in a cross-section and 10 elements in the longitudinal 
direction, the nodes (and correspondingly the equations) are numbered starting at (0 0 0) and 
moving first up in the z-direction, then across in the y-direction and finally in the longitudinal or 
x-direction as shown in Figure 4(A). This numbering scheme leads to a matrix structure of the 
reduced problem as shown in Figure 4(B), with a close-up of the upper 20% in Figure 4(C). Very 
rapid convergence of the iterative method (around 25 iterations for a (4 x 4) x 10 mesh) is 
obtained with a preconditioner encompassing the three central bands as shown in the shaded 
region of Figure 4(C). This preconditioner will hereafter be called preconditioner I. These bands 
include the very basic axial coupling of the residual equations. This suggests that coupling in all 
three spatial dimensions is necessary for an effective preconditioner. Although this preconditioner 
leads to rapid convergence of the iterative methods, its band width is roughly the same as the 
front width of a frontal solution. The suggested band widths and memory requirements shown in 

2 

(B) (C) 
Figure 4. (A) Schematic numbering scheme for preconditioner I. (B) Matrix structure of a reduced (4 x 4) x 10 finite 
element discretization. The size of the reduced system is 5007. (C) Upper 20% (1OOOx 1OOO) of matrix shown in (B) 

demonstrating the structure of the bands. Shaded region indicates preconditioner I 
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Table I11 demonstrate that the band width of the preconditioner rapidly becomes very large for 
fine transverse discretizations. 

If the nodes are renumbered, the resultant matrix graph can contain more information about 
the overall solution near the diagonal of the Jacobian. Since the overall band width of the 
problem is not an issue in the sparse matrix storage, it is desirable to renumber the domain so that 
coupling of the equations in all spatial dimensions is packed near the diagonal. This is done by 
renumbering the domain as shown in Figure 5(A). The domain is divided into a number of 
subdomains with smaller band width. These subdomains are then numbered consecutively, 
resulting in a matrix graph as shown in Figures 5(B) and 5(C). Now the packed major band of this 
matrix is factored and the LU factorization is used as the preconditioner for the CGS and 
GMRES algorithms. This preconditioner, shown in the shaded region of Figure 5(C), will be 
called preconditioner 11. Example runs of this preconditioner for various meshes are presented in 
Table IV. 

Table 111. Required band width of preconditioner I for various transverse discretizations ( n  x n )  for a 
system of 30000 equations (reduced system) 

n x n  Required band width Preconditioner storage 
(FEM cross-section mesh) (M words) 

4 x 4  
5 x 5  
6 x 6  
8 x 8  

l o x  10 

310 
460 
655 

1120 
1170 

26.6 
39.5 
56.2 
96.2 

151.9 

Table IV. Computational results for preconditioner I1 ((2 x 2 x 6) subdomain, convergence criterion 
IIr, 1 1 / 1 1  ro II < 

Iterations to convergence at Estimated 
Total each modified Newton step Total time time for 

unknowns for solution frontal 
Mesh (reduced) Solution method Step 1 Step 2 Step 3 (4 (4 t 
(4 x 4) x 6 4387 

(3007) 

(6 x 6) x 6 t  9131 
(6887) 

(8 x 8) x 6 15595 
(12359) 

(10 x10) x6 23779 
(1 9423) 

CGS 41 41 
GMRES (25) 127 127 
GMRES (50) 85 85 
GMRES 65 65 
CGS* 106 106 
GMRES (50) 29 1 290 
GMRES(100) 161 161 
GMRES* 122 122 
CGS 194 199 
GMRES 192 192 
CGS No convergence 
GMRES 212 272 

49 
112 
87 
64 

105 
242 
153 
117 
186 
186 

264 
(> 300) 

35-9 127 
45.2 
35.9 
31.4 

149.2 94 
186.1 
119.0 
105.9 
43 1 43 1 
278.1 
N A  1465 

6594 

* Runs used in Table V. 
t Convergence shown in Figure 6. 
$ Assumes 4 ns per operation and disregards Jacobian calculation (4NF2 f9NF total operations). 
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Figure 5. (A) Schematic numbering scheme for preconditioner 11. Same physical problem and mesh as in Figure 4. 
(B) Matrix structure of renumbered FEM discretization shown in (A). (C) Upper 10% of matrix shown in (B). Shaded 

region indicates preconditioner I1 

Solution algorithms 

As stated earlier, two general solution algorithms that are applicable to non-symmetric systems 
are investigated. The CGS algorithm is attractive because it stands ‘as is’ with no parameters that 
need to be chosen as in GMRES(k), where the subspace dimension k must be chosen. Further- 
more, CGS requires less storage because the subspace basis vectors that are stored in GMRES(k) 
are not required. 

The convergence characteristics of the two methods are very different as shown in Figure 6. The 
convergence of the CGS algorithm can be rapid but erratic, with large variations up and down in 
the residual norm while overall convergence is approached. In GMRES(k) convergence is 
monotonic, with a steady decrease in the residual norm. However, the convergence can be slow if 
the subspace dimension is chosen too small such that several restarts are required. In general, it is 
suggested to use as large a Krylov subspace as is practical, since non-restarted GMRES is 
apparently significantly better than restarted GMRES. 

Table IV gives iteration counts and solution times for various meshes using the CGS and 
GMRES algorithms with various Krylov subspace sizes. For the present application we favoured 
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Figure 6. Convergence CGS and GMRES( k )  algorithms using Preconditioner I1 
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the GMRES algorithm over the CGS algorithm because it required fewer operations per iteration 
as discussed below. However, if memory restrictions exist, CGS is preferred. Further comparative 
analysis of the quality of the two algorithms is required to determine if one is superior for this 
preconditioner and problem. 

Continuation 

The use of the iterative solution methods for the calculation of a continuation step (solution of 
equation (19)) was found to work well using preconditioner I. Typically, only 20-30 CGS 
iterations were required to converge to a solution. It is unknown, however, how well this 
technique will work near bifurcation and turning points when the Jacobian matrix is approaching 
singularity. It is possible that as the matrix becomes less well conditioned, the convergence 
properties deteriorate. However, a good preconditioning matrix may allow for robust continua- 
tion. A disadvantage of the use of sparse matrix techniques is that it is difficult to calculate the 
determinant of the Jacobian. The sign of the determinant is a useful indicator of a change in the 
stability of the solution.” 

Timings and operation counts 

The time-intensive operations required for typical runs using CGS and GMRES are shown in 
Table V. In these runs a pointer array was used to avoid the search in the ‘matrix’ vector A.  
Furthermore, the structure of A was read from an unformatted file created earlier. As can be seen, 
the majority of time is spent in the preconditioner factorization, the assembly loop and the 
iterative method. Furthermore, the time in the solution algorithm is dominated by back 
substitutions and matrix/vector multiplication. For a given problem it was found that each 
GMRES iteration was approximately twice as fast as each CGS iteration. Because the GMRES 
iterations are faster than the CGS iterations, if memory permits, the GMRES algorithm is 
favoured. 



834 E. 0. EINSET AND K. F. JENSEN 

Table V. Time-intensive operations ((6 x 6) x 6 FEM mesh, preconditioner I1 
with (2 x 2 )  x 6 subdomain) 

Operation CGS GMRES 

Factorization (one time with LINPACK) 5.5% 7.7% 
Jacobian calculation (call to ABFIND) 9.9% 13.8% 
Re-solution with LU decomposition (LINPACK) 43.1% 35.2% 
Matrix/vector multiplication 32.3% 261% 

The test of a numerical method is its memory and operation count comparison with est- 
ablished methods. The present method is compared with the frontal method of Irons’ and 
Hood14 which is a direct method. A conservative analysis takes the operation count of frontal 
methods as essentially the same as that of band solvers with the front width substituted for the 
band width. For large values of N (total number of unknowns) and a front width F the total 
number of operation counts for one complete factorization (or solution if standard Gauss 
elimination is used) with pivoting is about 2NF2.  For the formulation considered, F is approxim- 
ately one-half the total band width. Since back substituions are accomplished in O ( N F )  
operations, they are insignificant compared with the factorization. The total operation count for 
the frontal method is then about 2NF2 for large values of N and F .  The memory requirements of 
the frontal method depend on whether or not the LU factors are stored. If L and U are not stored, 
the memory overhead is very small (of the order of F 2  if only the ‘frontal’ matrix is stored). The 
disk requirements are quite large, though, for large problems. If the full LU decomposition is 
required, it is advantageous to keep the full LU decomposition in core and the memory 
requirement is even larger. 

The present iterative method is dominated by the factorization of the preconditioner (stored in 
band storgage) and the CGS or GMRES iterations, which are dominated by back substitutions 
and matrix/vector multiplications. For a preconditioner band width P the factorization with 
pivoting takes 2NP2 operations’6319 and a storage of 3 N P +  1.’’ Each iteration of the CGS 
iterative method requires two matrix/vector multiplication (approximately 2NP operations) and 
two back substitutions (approximately 6 N P  operations). The operation count for the GMRES 
algorithm is about half of this but is also a function of the restart parameter (subspace size). 
Notice that for this comparison the Jacobian calculation and assembly is not considered since it is 
the same for both methods. This leads to a total operation count of about 2NP2 + 8 M N P  for the 
preconditioned CGS iterative method, where M is the total number of iterations required for 
convergence. The total storage is about 3 N P + J ,  where J is the storage overhead of the Jacobian 
discussed earlier. 

The relative efficiency of the CGS iterative algorithm execution is defined to be 

E =(frontal operations)/(iterative operations) = N F 2 / (  N P 2  + 4 M N P ) .  (20) 
This efficiency is not completely independent of the total number of unknows, N since the 
condition number gets larger and M increases” as the size of a system increases. If the full front 
width is used as the preconditioner ( P  = F),  then the frontal method will always be faster for the 
first Newton step because of the added cost of the iterations. However, after the preconditioner is 
factored, each successive Newton step takes only the cost of the iterative method, which is cheap 
(approximately 8M N P ) .  This can make the iterative algorithm with preconditioner I potentially 
faster than the frontal method if many full Newton steps are required. 
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Figure 7. Efficiency of CGS iterative method versus front width. M is the total number of CGS iterations to convergence 

Using preconditioner I1 ((2 x 2) x NX subdomain preconditioning), it was found that P M 180 is 
adequate such that 

E = F ’/( 180’ + 720M). (21) 
If M % 100, then the critical F for equal operation counts is about 320, which is below the front 
widths considered in the present problem (F M 2000 for a 10 x 10 cross-discretization, F M 425 for 
a 4 x 4 cross-discretization). Figure 7 shows the efficiency of the CGS iterative method compared 
with the frontal method for various iteration counts. For all the cases there is a break-even point 
in front width above which the iterative solver is more efficient. As the number of iterations 
decreases, the break-even front width decreases. For reasonable counts the break-even point is for 
a front width between 300 and 800. This is smaller than the scale of the present problem. This 
analysis demonstrates that for large problems (large band widths or large front widths) the 
iterative solution is worthwhile and the problem is solved in a shorter amount of CPU time. In 
addition, the cost of the Newton steps after the first step is much lower. It should be noted that a 
similar analysis using the GMRES algorithm would show the iterative method as being even 
more favourable, since the GMRES iteration was found to be faster than the CGS iteration in this 
study. 

Further speed-up of the solution algorithm may come from various sources. A candidate for 
speed-up is in the calculation of the Jacobian entries. This can be done with eight-point Gauss 
quadrature instead of 27-point quadrature with some loss of accuracy. This option should be 
investigated to determine how much solution accuracy is lost. In preliminary tests it was found 
that convergence of the iterative solution algorithms suffered greatly when using lower-order 
quadrature. This is attributed to a worsening of the condition number of the resultant Jacobian 
matrix when lower-order quadrature was used. 

In the solution algorithm, operations with the preconditioner done with LINPACK routines 
are dominated by SAXPY calls, so a faster SAXPY routine would decrease the execution time 
drastically. Further speed-up requires optimization of the assembly and matrix/vector multiplica- 
tion operations. These two operations are candidates for parallel processing. If non-contiguous 
elements are operated on simultaneously, the assembly process may be multitasked. As for the 
matrix/vector multiplication, since the inner loop is already vectorized, the next logical option is 



836 E. 0. EINSET AND K. F. JENSEN 

optimization of the outer loop. This can be multitasked on a smaller scale-'microtasked' in Cray 
language."j 

Fluid pow solutions 

Gas flow in a long rectangular duct of aspect ratio two and heated from below is simulated as 
an example of the use of this solution algorithm. The channel is 2.5 cm high and 5.0 cm wide. A 
symmetry plane is assumed at the half-width so only half the domain is solved for. The entrance 
region is 10 cm long and the heated susceptor region is 30 cm long. A 10 cm exhaust region 
insures that outlet effects do not influence the flow in the susceptor region. The discretization in 
the cross-section is 8 x 8, with eight, 20 and three elements in the three axial regions. For this 
discretization the total number of equations was 75 420, with 63 268 equations in the reduced 
problem. Using the restarted GMRES algorithm with a Krylov subspace size of 300, 530 
iterations were required for convergence at each Newton step. The total time for the 530 iterations 
was about 1100s on a Cray-2 512M word supercomputer. The LU decomposition of the 
preconditioner took 82 s and the assembly of the Jacobian and preconditioner took 83 s. Because 
the essential physics was captutred with a coarser mesh, a (4 x 4) x 40 mesh was used for the 
second and third examples below. 

The first case considered is nitrogen flow. The susceptor is heated to 294.5 K while the inlet 
fluid and top wall are fixed at 293 K, leading to a value of AT/To=OO05. This small value of 
ATIT, indicates that this N, flow is nearly Boussinesq. Figure 8 shows two symmetric particle 
path lines, velocity profiles at various channel heights and axial distances and transverse arrow 
plots for a Rayleigh number Ra = 2385 and Reynolds number Re = 24.8 (u,,, = 1.5 cm s-'). Nute 
that the values of Re and Ra are defined with respect to the inlet temperature To and the maximum 
inlet velocity (centre-line velocity). To find Re based on the average inlet velocity, the present Re 
should be divided by 1.9981. 

For this supercritical Ra it is well known longitudinal rolls develop downstream2' as observed 
in Figure 8. For this Re there is no back flow in the entrance region of the channel. If the inlet flow 
rate is reduced to Re = 8.3 (u,,, = 0.5 cm s -  I), a recirculation forms in the entrance region of the 
susceptor as seen in Figure 9. The longitudinal circulation downstream is in the direction also 
predicted by marching techniques for adiabatic side walls.27 However, this solution could not be 
correctly obtained with numerical marching methods since back flow exists. 

If the inlet flow rate is decreased further to Re = 6.7 (urnax = 0.404 cm s-  I), the longitudinal roll 
direction downstream reverses because of the strengthening of the transverse roll as shown in 
Figure 10. This solution was reached with first-order continuation from the solution in Figure 9. 
Since the iterative scheme makes it dificult to evaluate the determinant of the Jacobian matrix, it 
is not clear whether or not the solution is stable. It is possible that this solution is unstable and 
that the stable solution in this parameter regime is time-dependent. The assumed plane of 
symmetry at the half-width for this calculation may further constrain the possible solutions. 

Fluid flow calculations have been performed for larger values of ATIT, which are relevant to 
chemical vapour deposition (CVD) reactor flows. These simulations demonstrate how non- 
Boussinesq conditions affect the fluid solutions. Similar fluid phenomena have been observed. 
For example, the reversal of the direction of the downstream longitudinal roll has been observed 
in H, flow simulations with AT=600 K (AT/To=2) and ~ , , , = 4 ~ 0 c m s - ~ .  It is again unknown 
whether or not these solutions are stable, but if these flows are realizable in CVD reactor 
operation, they will have a strong effect on the growth rate uniformity realized in the reactor.2 

The present solution technique has also been applied to H, flow simulations with Rayleigh 
number as high as 22 000 and Reynolds numbers as high as 60 (average uo basis) and there was no 
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Figure 8. Particle path lines, cross-section arrow plots and axial velocity profiles for nitrogen flow at Re= 24.8, Ra= 2385 
and AT/T, =0.005. Axial velocity profiles are shown at: solid line, 0.88 H, dotted, 0.80 H; dashed, 0.68 H ;  dash/dot, 0.48 H ;  

dash/dash, 0.40 H .  (a) 10 cm (start of heated region); (b) 12 cm; (c) 30 cm 



838 E. 0. EINSET AND K. F. JENSEN 

u) 

”I 

Widlh (cm) 

(a )  

.5 0.0 0.5 i.0 1.5 2.0 2.5 

Width (cm) 

(C) 

Figure 9. Particle path lines, cross-section arrow plots and axial velocity profiles for nitrogen Row at Re= 8.28, Ra= 2385 
and AT/T, =0.005. Axial velocity profiles are shown at: solid line, 0.88 H, dotted, 080 H, dashed, 0.68 H; dash/dot, 048 H; 

dash/dash, 0.4011. (a) 10 cm (start of heated region); (b) 12 cm; (c) 30 cm 
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Figure 10. Particle path lines, cross-section arrow plots and axial velocity profiles for nitrogen flow at Re = 67, Ra = 2385 
and A.T/T, =0.005. Axial velocity profiles are shown at: solid line, 0.88 H ;  dotted, 0.80 H ;  dashed, 0.68 H, dash/dot, 0.48 H ;  

dash/dash, 0.40 H .  (a) 10 cm (start of heated region); (b) 12 cm; (c) 30 cm 
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apparent degradation of the performance of the solution method. At such high Reynolds 
numbers, however, it would be more efficient to use a parabolic assumption and integrate in the 
axial dimension of the channel.’* 

CONCLUSIONS 

The present study was undertaken to develop an efficient finite element technique for the 
assembly and solution of a three-dimensional mixed convection fluid flow problem. The scale of 
the model and the sparsity of the resultant matrix system lead to the use of sparse matrix storage 
techniques and subsequently iterative solution algorithms for the solution of the problem. Several 
conclusions regarding the implementation of a solution for this type of problem may be drawn: 

1. A preconditioner centred around the diagonal of the Jacobian and encompassing the 
fundamental spatial coupling of the residual equations in all three dimensions is adequate 
for convergence of the tested iterative matrix solution algorithms. 

2. Assembly and factorization of the preconditioner only at the first Newton step is adequate 
for subsequent Netwon steps and greatly enhances the overall algorithm efficiency. 

3. CGS and GMRES are comparable solution algorithms in total iteration counts, but 
although GMRES requires slightly more storage, it is faster and therefore favoured. Also, if 
memory permits, restarting the GMRES iterations is not suggested. 

4. First-order continuation steps can be readily calculated using iterative solution methods; 
however, it is not known how robust the convergence will be near bifurcation and turning 
points when the Jacobian matrix approaches singularity. 

The conclusions above relate directly to the general solution algorithm that was used in this 
problem. The bottle-necks that keep the solution time slow are primarily related to operations 
with the preconditioner and the assembly of the Jacobian. The bottle-necks in the solution 
algorithm can be addressed for faster execution time with 

(1) a faster SAXPY routine 
(2) parallel element-by-element Jacobian calculation and assembly 
(3) multitasked matrix/vector multiplication. 

To enhance the performance of the preconditioner, the use of a shift parameterz9 may be a 
viable option. The use of a shift parameter could also eliminate the problem of a non-diagonally 
dominant row such as the continuity equation contribution to the physical problem. Simple tests 
using a shift parameter have not been conclusive, but the preservation of some form of pivoting to 
preserve the nature of the continuity equation seems to be necessary. Another related option is to 
use some form of diagonal lumping. 

It has been found that the preconditioning performance depends critically on including 
coupling of the equations of motion in all three spatial dimensions. The bands around the 
diagonal of the Jacobian give an approximate description of the physical problem. By solving 
exactly over subdomains of the global domain, we have constructed an effective preconditioner. 
The present renumbering is probably not the most efficient, since other renumbering schemes that 
lump an approximate description of the problem near the diagonal may lead to more effective 
preconditioners. 
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